Preprint
Article

The Evolution of Internal Damage Identified by Means of X-Ray Computed Tomography in Two Steels and the Ensuing Relation with Gurson’s Numerical Modelling

Altmetrics

Downloads

307

Views

304

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

18 December 2018

Posted:

19 December 2018

You are already at the latest version

Alerts
Abstract
This paper analyses the evolution of the internal damage in two types of steel that show different fracture behaviours, with one of them being the initial material used for manufacturing prestressing steel wires, which shows a flat fracture surface perpendicular to the loading direction, and the other one being a standard steel used in reinforced concrete structures, which shows the typical cup-cone surface. 3mm-diameter cylindrical specimens are tested with a tensile test carried out in several loading stages and, after each of them, unloaded and analysed with X-ray tomography, which allows detection of internal damage throughout the tensile test. In the steel used for reinforcement, damage is developed progressively in the whole specimen, as predicted by Gurson-type models, while in the steel used for manufacturing prestressing steel-wire damage is developed only in the very last part of the test. In addition to the experimental study, a numerical analysis is carried out by means of the finite element method by using a Gurson model to reproduce the material behaviour.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated