A peer-reviewed article of this preprint also exists.
Abstract
The accuracy of sales prediction models based on the big data of online word-of-mouth (eWOM) is still not satisfied. We argue that eWOM contains heat and sentiments of different product dimensions, which can improve the accuracy of these models. In this paper, we propose a dynamic topic analysis (DTA) framework in order to extract heat and sentiments of product dimensions from the big data of eWOM. Finally, we propose an autoregressive-heat-sentiment (ARHS) model, which integrates heat and sentiments of dimensions into the baseline predictive model. The empirical study in movie industry confirms that heat and sentiments of dimensions can improve the accuracy of sales prediction model. ARHS model is better for movie box-office revenue prediction than other models.
Keywords:
Subject:
Business, Economics and Management - Marketing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.