Preprint
Article

Monolithic Microwave-Microfluidic Sensors Made with Low Temperature Co-Fired Ceramics (LTCC) Technology

Altmetrics

Downloads

344

Views

308

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

02 January 2019

Posted:

04 January 2019

You are already at the latest version

Alerts
Abstract
This paper compares two types of microfluidic sensors that are designed for operation in ISM bands at microwave frequencies of 2.45 GHz and 5.8 GHz. In the case of the first sensor, the principle of operation is based on the resonance phenomenon in a microwave circuit filled with a test sample. The second sensor is based on the interferometric principle and makes use of the superposition of two coherent microwave signals, where only one of them goes through a test sample. Both sensors are monolithic structures fabricated using low temperature co-fired ceramics (LTCC). The LTCC-based microwave-microfluidic sensor properties are examined and compared by measuring their responses for various concentrations of two types of test fluids: one is a mixture of water/ethanol, and the other is dopamine dissolved in a buffer solution. The experiments show a linear response for the LTCC-based microwave-microfluidic sensors as a function of the concentration of the components in both test fluids.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated