Preprint
Article

Detecting Private Information in Large Social Network using mixed Machine Learning Techniques

Altmetrics

Downloads

327

Views

388

Comments

0

This version is not peer-reviewed

Submitted:

07 January 2019

Posted:

08 January 2019

You are already at the latest version

Alerts
Abstract
The violation of privacy, others people or personal, is a very current problem, which concerns not only on the web but also in private life. In the years 1990 it was expected that nowadays, that any routine operation was carried out "manually", and it would be performed through mobile phones or personal computers. The problem pertains the distribution network that allows to share and bring together information and as result the network becomes unsafe, if subjected to attacks. Nowaday we put personal information on web because otherwise we are seen as “weak”. This work aims to measure and analyze how much information are shared by users of a pre-established social network and it is carried out through a set of algorithms techniques of machine learning.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated