Preprint
Article

A Real-Time BOD Estimation Method in Wastewater Treatment Process Based on an Optimized Extreme Learning Machine

Altmetrics

Downloads

443

Views

479

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

14 January 2019

Posted:

15 January 2019

You are already at the latest version

Alerts
Abstract
It is difficult to capture the real-time online measurement data for biochemical oxygen demand (BOD) in wastewater treatment processes. An optimized extreme learning machine (ELM) based on an improved cuckoo search algorithm (ICS) is proposed in this paper for the design of soft BOD measurement model. In ICS-ELM, the input weights matrices of the extreme learning machine (ELM) and the threshold of the hidden layer are encoded as the cuckoo's nest locations. The best input weights matrices and threshold are obtained by using the strong global search ability of improved cuckoo search (ICS) algorithm. The optimal results can be used to improve the precision of forecasting based on less number of neurons of the hidden layer in ELM. Simulation results show that the soft sensor model has good real-time performance, high prediction accuracy and stronger generalization performance for BOD measurement of the effluent quality compared to other modeling methods such as back propagation (BP) network in most cases.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated