Optical networks are prone to power jamming attacks intending service disruption. This paper presents a Machine Learning (ML) framework for detection and prevention of jamming attacks in optical networks. We evaluate various ML classifiers for detecting out-of-band jamming attacks with varying intensities. Numerical results show that artificial neural network is the fastest ($10^6$ detection per second) for inference and most accurate ($\approx 100 \%$) in detecting power jamming attacks as well as identifying the optical channels attacked. We also discuss and study a novel prevention mechanism when the system is under active jamming attacks. For this scenario, we propose a novel resource reallocation scheme that utilizes the statistical information of attack detection accuracy to lower the probability of successful jamming of lightpaths while minimizing lightpaths' reallocations. Simulation results show that the likelihood of jamming a lightpath reduces with increasing detection accuracy, and localization reduces the number of reallocations required.
Keywords:
Subject: Computer Science and Mathematics - Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.