Preprint
Article

Toward Optimality of Proper Generalised Decomposition Bases

Altmetrics

Downloads

261

Views

716

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 January 2019

Posted:

01 February 2019

You are already at the latest version

Alerts
Abstract
The solution of structural problems with nonlinear material behaviour in a model order reduction framework is investigated in this paper. In such a framework, greedy algorithms or adaptive strategies are interesting as they adjust the reduced order basis (ROB) to the problem of interest. However, these greedy strategies may lead to an excessive increase in the size of the reduced basis, i.e. the solution is no more represented in its optimal low-dimensional expansion. Here, an optimised strategy is proposed to maintain, at each step of the greedy algorithm, the lowest dimension of the PGD basis using a randomised SVD algorithm. Comparing to conventional approaches such as Gram-Schmidt orthonormalisation or deterministic SVD, it is shown to be very efficient both in terms of numerical cost and optimality of the reduced basis. Examples with different mesh densities are investigated to demonstrate the numerical efficiency of the presented method.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated