In this study, the efficiency of an anaerobic treatment system for wastewater from a South African poultry slaughterhouse was evaluated using a lab-scale static granular bed reactor (SGBR). The down-flow SGBR (2 L) was operated continuously for 138 days under mesophilic conditions (35-37 ˚C), at hydraulic retention times (HRTs) ranging from 24 to 96 h and average organic loading rates (OLRs) of 0.78 to 5.74 g COD/L.day. The SGBR achieved an average chemical oxygen demand (COD) removal efficiency of 80% and the maximum COD removal achieved was 95%, at an HRT of 24 h and average OLR of 5.74 g COD/L.day. The optimization of the SGBR, with regard to a suitable HRT and OLR, was determined using response surface methodology (RSM). The optimal SGBR performance with regard to the maximum COD removal efficiency was predicted for an OLR of 12.49 g COD/L.day and a HRT of 24 h, resulting in a 95.5% COD removal efficiency. The model R2 of 0.9638 indicated that the model is a good fit and is suitable to predict the COD removal efficiency for the SGBR.
Keywords:
Subject:
Engineering - Other
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.