Komlos conjecture is about the existing of a constant upper bound over the dimension n of the function $K(n)$ defined by $$K(n)=max_{ \{ \overrightarrow{V_1},...,\overrightarrow{V_n} \} \in \{ \overrightarrow{V_i} \in { R}^n \| \overrightarrow{V_i} \| \leq 1 \} ^n } min_{ \{\epsilon_1,...\epsilon_n\} \in \{-1,+1\}^n } \|\sum_{i=0}^{n} \epsilon_i \overrightarrow{V_i}\}\|_{\infty} $$ In this paper, the function $K(n)$ is evaluated first for lower dimensions, $n\leq 5$, where it found that $K(2)=\sqrt{2}$. For higher dimension, the function $f(n)=\sqrt{ n-\lceil\log_2(2^{n-1}/n) \rceil}$ is found to be a lower bound for the function $K(n)$, from where it is concluded that the Komlos conjecture is false i.e., the universal constant $k=max_{n \in N} K(n) $ does not exist because of $$\lim_{n \rightarrow \infty } K(n) \geq \lim_{n \rightarrow \infty } \sqrt{ \log_2(n)-1 }=+\infty$$
Keywords:
Subject: Computer Science and Mathematics - Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.