The paper describes preliminary studies on the influence of humidity on the electrical resistance of a textile sensor made of carbon fibers. The concept of the sensor refers to externally bonded fiber reinforcement commonly used to strengthen building structures. However, the zig-zag arrangement of carbon fiber tow allows measuring strains, as it is done in popular resistive strain gauges. The sensor tests proved its effectiveness in the measurement of strains, but also showed a high sensitivity to changes in the temperature and humidity which unfavorably affects the readings and their interpretation. The influence of these factors must be compensated. Due to the size of the sensor, there is not possible electrical compensation by the combining of several sensors into the half or full Wheatstone bridge circuit. Only mathematical compensation based on known humidity resistance functions is possible. The described research is the first step to develop such relations. The tests were carried out at temperatures of 10 °C, 20 °C and 30 °C, with changing the humidity in the range of 30-90%.
Keywords:
Subject: Engineering - Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.