Preprint
Article

Model Based on an Effective Material Removal Rate to Evaluate the Specific Energy Consumption in Grinding

Altmetrics

Downloads

350

Views

304

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

21 February 2019

Posted:

25 February 2019

You are already at the latest version

Alerts
Abstract
The energy efficiency of grinding depends on the appropriate selection of cutting conditions, grinding wheel and workpiece material. Additionally, the estimation of specific energy consumption is a good indicator to control the energy consumed during the grinding process. Consequently, this study develops a model of material removal rate to estimate the specific energy consumption based on the measurement of active power consumed in a plane surface grinding of C45K with different thermal treatments and AISI 304. This model identifies and evaluates the power dissipated by sliding, ploughing and chip formation in a industrial-scale grinding process. Furthermore, the instantaneous positions of the abrasive grains during cutting are described to study the material removal rate. The estimation of specific chip formation energy is similar to that described by other authors in laboratory scale, which allows to validate the model and experiments. Finally, the results show that the energy consumed by sliding is the main phenomenon of energy dissipation in industrial-scale grinding process, where it is denoted that sliding energy by volume unity decreases as the depth of cut and speed of workpiece increase.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated