Plants produce a diverse portfolio of sesquiterpenes that are important in their response to herbivores and the interaction with other plants. Their biosynthesis from farnesyl diphosphate depends on the sesquiterpene synthases. Here, we investigate to what extent metabolic pathways can be reconstructed just from knowledge of the final product and the reaction mechanisms catalyzed by sesquiterpene synthases. We use the software package MedØlDatschgerl (MØD) to generate chemical networks and elucidate pathways contained in them. As examples, we successfully consider the reachability of the important plant sesquiterpenes β-caryophyllene, α-humulene, and β-farnesene. We also introduce a graph database to integrate simulation results with experimental biological evidence for selected predicted sesquiterpenes biosynthesis.
Keywords:
Subject: Biology and Life Sciences - Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.