Preprint
Article

Miscanthus x giganteus Stem versus Leaf-derived Lignins Differing in Monolignol Ratio and Linkage

Altmetrics

Downloads

354

Views

512

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 March 2019

Posted:

04 March 2019

You are already at the latest version

Alerts
Abstract
As a renewable industrial crop, Miscanthus offers numerous advantages, namely high photosynthesis activity (as a C4 plant) and exceptional CO2 fixation rate. These properties make Miscanthus very attractive for industrial exploitation, such as lignin generation. Here, we present a systematic study analyzing the correlation of the lignin structure with Miscanthus genotype and plant portion (stem versus leaf). Specifically, the ratio of the three monolignols and corresponding building blocks as well as the linkages formed between the units have been studied. Depending on the Miscanthus genotype and plant component (leaf versus stem), correlations between chemical structure and properties of the lignins have been determined, i.e. correlations in molecular weight, polydispersity and decomposition temperature. Lignin isolation was performed using non-catalyzed organosolv pulping and the structure analysis includes NREL, FTIR, UV-Vis, HSQC-NMR, TGA, pyrolysis GC/MS. Structural differences were found for stem and leaf-derived lignins. Compared to beech wood lignins, Miscanthus lignins possess lower molecular weight and narrow polydispersities (< 1.5 Miscanthus vs. > 2.5 beech) corresponding to improved homogeneity. In addition to conventional univariate analysis of FTIR spectra, multivariate chemometrics revealed distinct differences for aromatic in-plane deformations of stem versus leaf-derived lignins. These results emphasize the potential of Miscanthus as low-input resource and Miscanthus-derived lignin as promising agricultural feedstock.
Keywords: 
Subject: Engineering  -   Bioengineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated