This paper investigates an alternative use of sterile aggregate materials which may arise from various construction applications in conjunction with other low-cost mineral raw materials to remediate the acid mine drainage phenomenon. This study is based on the combination of unprocessed mineral raw materials as well as on the basic concept of the cyclic economy where the conversion of a waste into a raw material for another application can be achieved. In this way, the value of mineral raw materials can be prolonged for as long as possible, waste generation and exploitation of natural resources are minimized and resources are kept as far as possible within the existing economy. In this study, an electrically continuous flow driven forced device proposed and demonstrated for the remediation of waste water in lab-scale by using certain mixes of mineral raw materials (serpentinite, andesite, magnesite, peat and biochar). Our results focus on the impact of the studied mineral raw materials and especially on their synergy on the water purification potential under continuous water flow operation. Using the proposed 7-day experimental electrically continuous flow driven forced device with the certain mixes of mineral raw materials, the increase of pH values from 3.00 to 6.82 as well as significant removal of Fe, Cu and Zn was achieved.
Keywords:
Subject: Physical Sciences - Chemical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.