Preprint
Article

An Ensemble Method of the Relationship between Diffusion Coefficient and Entropy in the Classical Brownian Motion

Altmetrics

Downloads

396

Views

319

Comments

0

This version is not peer-reviewed

Submitted:

27 March 2019

Posted:

28 March 2019

You are already at the latest version

Alerts
Abstract
The diffusion coefficient--a measure of dissipation, and the entropy--a measure of fluctuation are found to be intimately correlated in many physical systems. Unlike the fluctuation dissipation theorem in linear response theory, the correlation is often strongly non-linear. To understand this complex dependence, we consider the classical Brownian diffusion in this work. Under certain rational assumption, i.e. in the bi-component fluid mixture, the mass of the Brownian particle $M$ is far greater than that of the bath molecule $m$, we can adopt the weakly couple limit. Only considering the first-order approximation of the mass ratio $m/M$, we obtain a linear motion equation in the reference frame of the observer as a Brownian particle. Based on this equivalent equation, we get the Hamiltonian at equilibrium. Finally, using canonical ensemble method, we define a new entropy that is similar to the Kolmogorov-Sinai entropy. Further, we present an analytic expression of the relationship between the diffusion coefficient $D$ and the entropy $S$ in the thermal equilibrium, that is to say, $D =\frac{\hbar}{eM} \exp{[S/(k_Bd)]}$, where $d$ is the dimension of the space, $k_B$ the Boltzmann constant, $\hbar $ the reduced Planck constant and $e$ the Euler number. This kind of scaling relation has been well-known and well-tested since the similar one for single component is firstly derived by Rosenfeld with the expansion of volume ratio.
Keywords: 
Subject: Physical Sciences  -   Thermodynamics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated