Preprint
Article

A Ducted Photovoltaic Façade Unit with Buoyancy Cooling: Part I Experiment

Altmetrics

Downloads

240

Views

281

Comments

0

This version is not peer-reviewed

Submitted:

13 April 2019

Posted:

16 April 2019

You are already at the latest version

Alerts
Abstract
A ducted photovoltaic façade (DPV) unit Studied using experimental Prototype and simulated in a full scale Computational Fluid Dynamics CFD Model. The Study comes in two parts; This is Part I with the title detailed above and Part II titled ‘A Ducted Photovoltaic Façade Unit with Buoyancy Cooling: Part II CFD Simulation’.. The process adopted in the experimental study is replicated in the simulation Part. The aim was to optimize the duct width behind the solar cells to allow for maximum buoyancy-driven cooling for the cells during operation. Duct widths from 5 to 50 cm were tested in a Proto-type. A duct width of 45 cm had the maximum calculated heat removed from the duct; however, the lowest cell-operating temperature was reported for duct width of 50 cm. It was found that the DT between ducts' inlets and outlets range from 5.47 °C to 12.32 °C for duct widths of 5–50 cm, respectively. The ducted system enhanced module efficiency by 12.69% by reducing PV temperature by 27 °C from 100°C to 73 °C. The maximum calculated heat recovered from the ducted PV system is 422 W. This is 47.98% from the incident radiation in the test. Total summation of heat recovered and power enhanced by the ducted system is 61.67%.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated