Preprint
Article

Reduction of Haematite Using Hydrogen Thermal Plasma

Altmetrics

Downloads

406

Views

330

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 April 2019

Posted:

23 April 2019

You are already at the latest version

Alerts
Abstract
The development of hydrogen plasma smelting reduction as a CO2 emission-free steel-making process is a promising approach. This study presents a concept of the reduction of hematite using hydrogen thermal plasma. A laboratory scale and pilot scale hydrogen plasma smelting reduction (HPSR) process are introduced. To assess the reduction behavior of hematite, a series of experiments has been conducted and the main parameters of the reduction behavior, namely the degree of hydrogen utilization, degree of reduction and the reduction rate are discussed. The thermodynamic aspect of the hematite reduction is considered and the pertinent calculations have been carried out using FactSageTM 7.2. The degree of hydrogen utilization and the degree of reduction were calculated using the off-gas chemical composition. The contribution of carbon, introduced from the graphite electrode, ignition pin and steel crucible, to the reduction reactions was studied. The degree of reduction of hematite, regarding H2O, CO and CO2 as the gaseous reduction products, is determined. It is shown that the degree of hydrogen utilization and the reduction rate were high at the beginning of the experiments, then decreased during the reduction process owing to the diminishing of iron oxide. Conducting experiments with the high basicity of slag B2=2 led to a decrease of the phosphorus concentration in the produced iron.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated