Preprint
Article

Improvement of Oxygen Supply to the Multicellular Spheroids Using a Gas-Permeable Plate and Embedded Hydrogel Beads

Altmetrics

Downloads

342

Views

305

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 April 2019

Posted:

03 May 2019

You are already at the latest version

Alerts
Abstract
Culture systems for 3-dimensional tissues, such as multicellular spheroids, are indispensable for high-throughput screening of primary or patient-derived xenograft (PDX)-expanded cancer tissues. Oxygen supply to the center of such spheroids is particularly critical for maintaining cellular functions as well as avoiding the development of a necrotic core. In this study, we evaluated 2 methods to enhance oxygen supply: (1) using culture plate with gas-permeable polydimethylsiloxane (PDMS) membrane at its bottom and (2) embedding hydrogel beads in the spheroids. Culturing spheroids on PDMS increased cell growth and affected glucose/lactate metabolism and CYP3A4 mRNA expression and subsequent enzyme activity. The spheroids comprised 5000 Hep G2 cells and 5000 20 µm-diameter hydrogel beads did not develop a necrotic core for 9 days when cultured on a gas-permeable sheet. In contrast, central necrosis in spheroids lacking hydrogel beads was observed after day 3 of culture, even when using PDMS. These results indicate that the combination of gas-permeable culture equipment and embedded hydrogel beads improves culture 3D spheroids produced from primary or PDX-expanded tumor cells.
Keywords: 
Subject: Biology and Life Sciences  -   Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated