Preprint
Article

Machine Learning Prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors

Altmetrics

Downloads

461

Views

413

Comments

0

Submitted:

01 May 2019

Posted:

06 May 2019

You are already at the latest version

Alerts
Abstract
Solar energy is a renewable resources of energy which is broadly utilized and have the least pollution impact between the available alternatives of fossil fuels. In this investigation, machine leaening approaches of neural networks (NN), neuro-fuzzy and least squares support vector machine (LSSVM) are used to build the models for prediction of the thermal performance of a photovoltaic-thermal solar collector (PV/T) by estimating its efficiency as an output of the model while inlet temperature, flow rate, heat, solar radiation, and heat of sun are input of the designed model. Experimental measurements was prepared by designing a solar collector system and 100 data extracted. Different analyses are also performed to examine the credibility of the introduced approaches revealing great performance. The suggested LSSVM model represented the best performance regarding the mean squared error (MSE) of 0.003 and correlation coefficient (R2) value of 0.99, respectively.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated