You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

A Generalized and Mode-adaptive Approach to the Power Flow Analysis of the Isolated Hybrid AC/DC Microgrids

Altmetrics

Downloads

261

Views

272

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

05 May 2019

Posted:

06 May 2019

You are already at the latest version

Alerts
Abstract
HybridAC/DC microgrids(HMG) are emerging as an attracting method for integrating the AC/DC distributed energy resources(DERs) with the features of high-performance and low-cost. In the isolated hybrid AC/DC microgrid (IHMG), the key problem is how to balance the power variation and regulate the voltage and frequency. Various energy storage systems (ESS)and interlinking converter (IC) technologies are viable for this application. The present study proposes a novel unified power flow model to evaluate and compare the abilities of the ESS with different connection topologies and ICs with different control approaches to maintain the voltage and frequency stability of the IHMG. In order to investigate the performance of the proposed scheme, five operation modes of the IHMG are defined and explained. The classification is based on the connection topologies and control modes of the ESS/IC in the IHMG. Then, a set of generic PF equations are derived. Moreover, three binary matrices are applied in the construction of the unified power equations. These matrices are used for describing the running state of the IHMG. Finally, in order to verify the proposed scheme, it is applied to several case studies of the IHMG. The operation characteristics of multi-DC subgrids IHMG in different modes, particularly when an external disturbance occurs, are investigated.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated