Preprint
Article

A Survey of Attacks Against Twitter Spam Detectors in an Adversarial Environment

This version is not peer-reviewed.

Submitted:

10 May 2019

Posted:

13 May 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Online Social Networks (OSNs), such as Facebook and Twitter, have become a very important part of many people’s daily lives. Unfortunately, the high popularity of these platforms makes them very attractive to spammers. Machine-learning (ML) techniques have been widely used as a tool to address many cybersecurity application problems (such as spam and malware detection). However, most of the proposed approaches do not consider the presence of adversaries that target the defense mechanism itself. Adversaries can launch sophisticated attacks to undermine deployed spam detectors either during training or the prediction (test) phase. Not considering these adversarial activities at the design stage makes OSNs’ spam detectors prone to a range of adversarial attacks. This paper thus surveys the attacks against Twitter spam detectors in an adversarial environment. In addition, a general taxonomy of potential adversarial attacks is proposed by applying common frameworks from the literature. Examples of adversarial activities on Twitter were provided after observing Arabic trending hashtags. A new type of spam tweet (Adversarial spam tweet), which can be used to undermine deployed classifier, were found. In addition, possible countermeasures that could increase the robustness of Twitter spam detectors against such attacks are investigated.
Keywords: 
Subject: 
Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated