Preprint
Review

Demand Prediction with Machine Learning Models; State of the Art and a Systematic Review of Advances

Altmetrics

Downloads

497

Views

508

Comments

0

Submitted:

12 May 2019

Posted:

14 May 2019

You are already at the latest version

Alerts
Abstract
Electricity demand prediction is vital for energy production management and proper exploitation of the present resources. Recently, several novel machine learning (ML) models have been employed for electricity demand prediction to estimate the future prospects of the energy requirements. The main objective of this study is to review the various ML models applied for electricity demand prediction. Through a novel search and taxonomy, the most relevant original research articles in the field are identified and further classified according to the ML modeling technique, perdition type, and the application area. A comprehensive review of the literature identifies the major ML models, their applications and a discussion on the evaluation of their performance. This paper further makes a discussion on the trend and the performance of the ML models. As the result, this research reports an outstanding rise in the accuracy, robustness, precision and the generalization ability of the prediction models using the hybrid and ensemble ML algorithms.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated