The sentiment of a word varies based on its context of usage: the words used around it and the part-of-speech it is used as. This paper proposes a technique to suggest the sentiment of a word by combining its part-of-speech and the semantic similarities of its co-occurrences with both context-specific and pre-trained embeddings to achieve powerful and fast results. A study was conducted across domains and sub-domains to measure variance of sentiment by switching domains and switching context within the same domain. Re-scoring a commonly used polarity lexicon showed that 10% of words changed scores while switching domains and 8% changed scores within domains while switching context. Part of Speech analysis on 65,353 commonly used sentiment lexicons showed that 81% of sentiment bearing (non-neutral) lexicons were of the tags NN (Common Noun), JJ (Adjective) or NNS (Proper Noun).
Keywords:
Subject: Computer Science and Mathematics - Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.