Preprint
Article

Idempotent Factorizations of Square-free Integers

Altmetrics

Downloads

315

Views

332

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 June 2019

Posted:

21 June 2019

You are already at the latest version

Alerts
Abstract
We explore the class of positive integers n that admit idempotent factorizations n=pq such that lambda(n) divides (p-1)(q-1), where lambda(n) is the Carmichael lambda function. Idempotent factorizations with p and q prime have received the most attention due to their cryptographic advantages, but there are an infinite number of n with idempotent factorizations containing composite p and/or q. Idempotent factorizations are exactly those p and q that generate correctly functioning keys in the RSA 2-prime protocol with n as the modulus. While the resulting p and q have no cryptographic utility and therefore should never be employed in that capacity, idempotent factorizations warrant study in their own right as they live at the intersection of multiple hard problems in computer science and number theory. We present some analytical results here. We also demonstrate the existence of maximally idempotent integers, those n for which all bipartite factorizations are idempotent. We show how to construct them, and present preliminary results on their distribution.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated