We introduce PyNTA, a modular instrumentation software for live particle tracking. By using the multiprocessing library of Python and the distributed messaging library pyZMQ, PyNTA allows users to acquire images from a camera at close to maximum readout bandwidth while simultaneously performing computations on each image on a separate processing unit. This publisher/subscriber pattern generates a small overhead and leverages the multi-core capabilities of modern computers. We demonstrate capabilities of the PyNTA package on the featured application of nanoparticle tracking analysis. Real-time particle tracking on megapixel images at a rate of 50 Hz is presented. Reliable live tracking reduces the required storage capacity for particle tracking measurements by a factor of approximately 103, as compared with raw data storage, allowing for a virtually unlimited duration of measurements
Keywords:
Subject: Physical Sciences - Applied Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.