Preprint
Article

Material Design and Performance Evaluation of Foam Concrete for Digital Fabrication

Altmetrics

Downloads

489

Views

409

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

26 June 2019

Posted:

28 June 2019

You are already at the latest version

Alerts
Abstract
3D-printing with foam concrete, which is known for its distinct physical and mechanical properties, has not yet been purposefully investigated. The article at hand presents a methodological approach for the mixture design of 3D-printable foam concretes and a systematic investigation of the potential application of this type of material in digital construction. Three different foam concrete compositions with water-to-binder ratios between 0.33 and 0.36 and having densities of 1100 to 1580 kg/m³ in the fresh state were produced with a pre-foaming technique using a protein-based foaming agent. Based on the fresh-state tests, including 3D-printing as such, an optimum composition was identified and its compressive and flexural strengths were characterised. The printable foam concrete showed compressive strength above 10 MPa and low thermal conductivity, which make it suitable for 3D-printing applications, while fulfilling both load-carrying and insulating functions.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated