Preprint
Article

Plasma Spectroscopy of Various Types of Gypsum: An ideal Terrestrial Analogue

Altmetrics

Downloads

380

Views

282

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 July 2019

Posted:

02 July 2019

You are already at the latest version

Alerts
Abstract
The first detection of gypsum (CaSO4.2H2O) by the Mars Science Laboratory (MSL) rover Curiosity in the Gale Crater, Mars created a profound impact on planetary science and exploration. The unique capability of plasma spectroscopy involving in situ elemental analysis in extraterrestrial environments, suggesting the presence of water in the red planet based on phase characterization and providing a clue to Martian paleoclimate. The key to gypsum as an ideal paleoclimate proxy lies in its textural variants, and in this study terrestrial gypsum samples from varied locations and textural types have been analyzed by Laser Induced Breakdown Spectroscopy (LIBS) technique. Petrographic, sub-microscopic and powder X-ray diffraction characterizations confirm the presence of gypsum (hydrated calcium sulphate; CaSO4.2H2O), bassanite (semi-hydrated calcium sulphate; CaSO4.1/2H2O) and anhydrite (anhydrous calcium sulphate; CaSO4) along with accessory phases (quartz and jarosite). The principal component analysis of LIBS spectra from texturally varied gypsums can be differentiated from one another because of the chemical variability in their elemental concentrations. The concentration of gypsum is determined from the partial least-square regressions model. Rapid characterization of gypsum samples with LIBS is expected to work well in extraterrestrial environments.
Keywords: 
Subject: Physical Sciences  -   Atomic and Molecular Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated