Preprint
Article

A New Unified Electro-Gravity Theory for the Electron

Altmetrics

Downloads

627

Views

1438

Comments

1

This version is not peer-reviewed

Submitted:

12 August 2019

Posted:

13 August 2019

You are already at the latest version

Alerts
Abstract
A rigorous model for the electron is presented by generalizing the Coulomb's Law or Gauss's Law of electrostatics, using a unified theory of electricity and gravity. The permittivity of the free-space is allowed to be variable, dependent on the energy density associated with the electric field at a given location, employing generalized concepts of gravity and mass/energy density. The electric field becomes a non-linear function of the source charge, where concept of the energy density needs to be properly defined. Stable solutions are derived for a spherically symmetric, surface-charge distribution of an elementary charge. This is implemented by assuming that the gravitational field and its equivalent permittivity function is proportional to the energy density, as a simple first-order approximation, with the constant of proportionality referred to as the Unifield Electro-Gravity (UEG) constant. The stable solution with the lowest mass/energy is assumed to represent a ``static'' electron without any spin. Further, assuming that the mass/energy of a static electron is half of the total mass/energy of an electron including its spin contribution, the required UEG constant is estimated. More fundamentally, the lowest stable mass of a static elementary charged particle, its associated classical radius, and the UEG constant are related to each other by a dimensionless constant, independent of any specific value of the charge or mass of the particle. This dimensionless constant is numerologically found to be closely related to the the fine structure constant. This possible origin of the fine structure constant is further strengthened by applying the proposed theory to successfully model the Casimir effect, from which approximately the same above relationship between the UEG constant, electron's mass and classical radius, and the fine structure constant, emerges.
Keywords: 
Subject: Physical Sciences  -   Particle and Field Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated