Preprint
Article

Characterization of Material Properties Based on Inverse Finite Element Modelling

Altmetrics

Downloads

668

Views

613

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 July 2019

Posted:

04 July 2019

You are already at the latest version

Alerts
Abstract
This paper describes a new approach that can be used to determine the mechanical properties of unknown materials and complex material systems. The approach uses inverse finite element modelling (FEM) accompanied with a designed algorithm to obtain the modulus of elasticity, yield stress and strain hardening material constants of an isotropic hardening material model, as well as the material constants of the Drucker-Prager material model (modulus of elasticity, cap yield stress and angle of friction). The algorithm automatically feeds the input material properties data to finite element software and automatically runs simulations to establish a convergence between the numerical loading-unloading curve and the target data obtained from continuous indentation tests using common indenter geometries. A further module was developed to optimise convergence using an inverse FEM analysis interfaced with a non-linear MATLAB algorithm. A sensitivity analysis determined that the dual Spherical and Berkovich (S&B) approach delivered better results than other dual indentation methods such as Berkovich and Vickers (B&V) and Vickers and Spherical (V&S). It was found that better convergence values can be achieved despite a large variation in the starting parameter values and / or material constitutive model and such behaviour reflects the uniqueness of the dual S&B indentation in predicting complex material systems. The study has shown that a robust optimization method based on a non-linear least-squares curve fitting function (LSQNONLIN) within MATLAB and ABAQUS can be used to accurately predict a unique set of elastic plastic material properties and Drucker-Prager material properties. This is of benefit to the scientific investigation of properties of new materials or obtaining the material properties at different location of a part which might be not be similar due to manufacturing processes (e.g. different heating and cooling rates at different locations).
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated