Preprint
Article

New Systematic Energy Generation Having Superconductivity Properties without Refrigeration

Altmetrics

Downloads

349

Views

596

Comments

0

This version is not peer-reviewed

Submitted:

03 July 2019

Posted:

04 July 2019

You are already at the latest version

Alerts
Abstract
This paper proposes a method of extracting energy from zero-point energy and evaluates the amount of energy gained. In addition, this electric circuit-based approach exhibits the Meissner effect, suggesting a new type of superconductivity that does not require refrigeration. The proposed method can provide extremely large amounts of energy, which is more than a conventional power station, without consuming fossil fuels or emitting radiation. Thus, it has the potential to solve the global energy problem. It involves preparing two electric loops containing diodes and connecting the loops together with current sources. The diodes are oriented in the same direction within each loop but in opposite directions in different loops. With this setup, the currents from the current sources build iteratively within the loops, resulting in large output currents. Our numerical analysis indicates that extremely large electric potentials are produced, which in turn yield large output currents. In addition, we confirm numerically that the voltage is zero around a loop and show analytically that the Meissner effect is present, proving the existence of a new type of superconductivity. Furthermore, when we introduce induction coils to not break the loop’s symmetry, they store extremely large amounts of energy and we can thus obtain energy from them via discharge currents.
Keywords: 
Subject: Physical Sciences  -   Applied Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated