Abstract
Estimating evapotranspiration (ET) has been one of the most important research in agriculture recently because of water scarcity, growing population, and climate change. ET is the sum of evaporation from the soil and transpiration from the crops to the atmosphere. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, people use weighing lysimeters, Bowen ratio, eddy covariance and many other methods to estimate ET. However, these ET methods are points or location-specific measurements and cannot be extended to a large scale of ET estimation. With the advent of satellites technology, remote sensing images can provide spatially distributed measurements. The satellites multispectral images spatial resolution, however, is in the range of meters, which is often not enough for crops with clumped canopy structure such as trees and vines. And, the timing or frequency of satellites overpass is not always enough to meet the research or water management needs. The Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, can help solve these spatial and temporal challenges. Lightweight cameras and sensors can be mounted on drones and take high-resolution images on a large scale of field. Compared with satellites images, the spatial resolution of UAVs’ images can be as high as 1 cm per pixel. And, people can fly a drone at any time if the weather condition is good. Cloud cover is less of a concern than satellite remote sensing. Both temporal and spatial resolution is highly improved by drones. In this paper, a review of different UAVs based approaches of ET estimations are presented. Different modified models used by UAVs, such as Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC), Two-source energy balance (TSEB) model, etc, are also discussed.