Preprint
Article

Discrete Two Dimensional Fourier Transform in Polar Coordinates Part I: Theory and Operational Rules

Altmetrics

Downloads

421

Views

344

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

09 July 2019

Posted:

11 July 2019

You are already at the latest version

Alerts
Abstract
The theory of the continuous two-dimensional (2D) Fourier Transform in polar coordinates has been recently developed but no discrete counterpart exists to date. In this paper, we propose and evaluate the theory of the 2D discrete Fourier Transform (DFT) in polar coordinates. This discrete theory is shown to arise from discretization schemes that have been previously employed with the 1D DFT and the discrete Hankel Transform (DHT). The proposed transform possesses orthogonality properties, which leads to invertibility of the transform. In the first part of this two-part paper, the theory of the actual manipulated quantities is shown, including the standard set of shift, modulation, multiplication, and convolution rules. Parseval and modified Parseval relationships are shown, depending on which choice of kernel is used. Similar to its continuous counterpart, the 2D DFT in polar coordinates is shown to consist of a 1D DFT, DHT and 1D inverse DFT.
Keywords: 
Subject: Computer Science and Mathematics  -   Discrete Mathematics and Combinatorics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated