Preprint
Article

Tunneling of Massive Vector Particles under the Influence of Quantum Gravity

Altmetrics

Downloads

258

Views

304

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

11 July 2019

Posted:

14 July 2019

You are already at the latest version

Alerts
Abstract
This paper is devoted to investigate charged vector particles tunneling via horizons of a pair of accelerating rotating charged NUT black hole under the influence of quantum gravitational effects. For this purpose, we use the modified Proca equation incorporating generalized uncertainty principle. Using the WKB approximation to the field equation, we obtain a modified tunneling rate and the corresponding corrected Hawking temperature for this black hole. Moreover, we analyze the graphical behavior of corrected Hawking temperature T'H with respect to the event horizon for the given black hole. By considering quantum gravitational effects on Hawking temperatures, we discuss the stability analysis of this black hole. For a pair of black holes, the temperature T'H increases with the increase in rotation parameters α and w, correction parameter β, black hole acceleration α and arbitrary parameter k and decreases with the increase in electric e and magnetic charges g.
Keywords: 
Subject: Physical Sciences  -   Quantum Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated