An improved anti-noise morphology vision navigation algorithm is proposed for intelligent tractor tillage in a complex agricultural field environment. Firstly, the two key steps, Guided Filtering and improved anti-noise morphology navigation line extraction, were addressed in detail. Then the experiments were carried out in order to verify the effectiveness and advancement of the presented algorithm. Finally, the optimal template and its application condition were studied for improving the image processing speed. The comparison experiment results show that the YCbCr color space has minimum time consumption, 0.094 s, compared with HSV, HIS and 2R-G-B color spaces. The Guided Filtering method can enhance the new & old soil boundary effectively than any other methods such as Tarel, Multi-scale Retinex, Wavelet-based Retinex and Homomorphic Filtering, meanwhile, has the fastest processing speed of 0.113 s. The extracted soil boundary line of the improved anti-noise morphology algorithm has best precision and speed compared with other operators such as Sobel, Roberts, Prewitt and Log. After comparing different size of image template, the optimal template with the size of 140×260 pixels can meet high precision vision navigation while the course deviation angle is not more than 7.5°. The maximum tractor speed of the optimal template and global template are 51.41 km/h and 27.47 km/h respectively which can meet real-time vision navigation requirement of the smart tractor tillage operation in the field. The experimental vision navigation results demonstrated the feasibility of the autonomous vision navigation for tractor tillage operation in the field using the new & old soil boundary line extracted by the proposed improved anti-noise morphology algorithm which has broad application prospect.
Keywords:
Subject: Engineering - Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.