Preprint
Article

Quantum Hair on Colliding Black Holes

Altmetrics

Downloads

244

Views

300

Comments

0

This version is not peer-reviewed

Submitted:

29 July 2019

Posted:

01 August 2019

You are already at the latest version

Alerts
Abstract
Black hole collision produce gravitational radiation which is generally thought in a quantum limit to be gravitons. The stretched horizon of a black hole contains quantum information, or a form of quantum hair, which in a coalescence of black holes participates in the generation of gravitons. This may be facilitated with a Bohr-like approach to black hole (BH) quantum physics with quasi-normal mode (QNM) approach to BH quantum mechanics. Quantum gravity and quantum hair on event horizons is excited to higher energy in BH coalescence. The near horizon condition for two BHs right before collision is a deformed AdS spacetime. These excited states of BH quantum hair then relax with the production of gravitons. This is then argued to define RT entropy given by quantum hair on the horizons. These qubits of information from a BH coalescence should then appear in gravitational wave (GW) data. This is a form of the standard AdS/CF T correspondence and the Ryu-Takayanagi (RT) formula [1]. The foundations of physics is proposed to be quantum information and a duality between spacetime observables and quantum fields.
Keywords: 
Subject: Physical Sciences  -   Quantum Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated