Preprint
Article

Effects of Vehicle-Induced Vibrations on the Tensile Performance of Early Age PVA-ECC

Altmetrics

Downloads

361

Views

473

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

05 August 2019

Posted:

07 August 2019

You are already at the latest version

Alerts
Abstract
Polyvinyl alcohol-engineering cementitious composites (PVA-ECC) has been widely applied in bridge deck repairing or widening, the common practice for doing this is that a portion of a bridge is left open to traffic while the closed portion is constructed, which expose the early age PVA-ECC to the vehicle-induced vibrations. However, whether vehicle-induced vibrations affect the tensile performance of early age PVA-ECC remains unknow. The purpose of this study was to conduct laboratory test programs on how much vehicle-induced vibrations during early ages affected the tensile performance of PVA-ECC. A self-improved device was used to simulate the vehicle-induced vibrations, and after vibrating with the designed variables, both a uniaxial tensile test and a grey correlation analysis were performed. The results indicated that: the effects of vehicle-induced vibrations on the tensile performance of early age PVA-ECC were significant, and they generally tended to be negative in this investigation. In particular, for all of the vibrated PVA-ECC specimens, the most negative age when vibrated occurred during the period between the initial set and the final set. We concluded that although vehicle-induced vibrations during the setting periods had no substantial effects on the inherent strain-hardening characteristics of PVA-ECC, the effects should not be ignored.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated