Preprint
Article

Biofilm-Associated Agr and Sar Quorum Sensing Systems of Methicillin-Resistant Staphylococcus Aureus are Inhibited by Fruit Extracts of Illicium Verum

Altmetrics

Downloads

759

Views

873

Comments

0

Submitted:

06 August 2019

Posted:

07 August 2019

You are already at the latest version

Alerts
Abstract
Background: Staphylococcus aureus (S. aureus) is an opportunistic pathogen and a predominant cause of life-threatening nosocomial infections. Drug resistance in S. aureus is attributed to production of biofilm, which is controlled largely by bacterial quorum sensing (QS) systems. Methodology: In vitro analysis of biofilm inhibition assay was performed using crystal violet staining assay, swarming motility, light microscopy and growth curve analyses. Identification of the major constituents of I. verum fruit extract was performed by GC-MS. Ligand-protein interaction was analyzed by molecular docking investigations. Results: The methanol extract of I. verum inhibited the growth of MRSA at the concentration of 4.8 mg/ml. At the sub-inhibitory concentration (2.4mg/ml), the extract showed significant reduction in biofilmogenesis. Light microscopy analysis confirmed the antibiofilm activity as well as the efficacy in disturbing biofilm architecture. A reduced swarming motility was observed at the lowest concentration of 2.4mg/ml. GC-MS analysis revealed anethol (AL) as the major constituent. The molecular docking analysis attributes the antibiofilm activity to an active ligand AL, which strongly interacted with the active site residues of AgrA and SarA proteins of S. aureus. Conclusion: We report the activities of I. verum to be immensely interfering with QS system and biofilm formation in MRSA.
Keywords: 
Subject: Biology and Life Sciences  -   Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated