Preprint
Article

The Influence of Deformation under Tension on Some Mechanical and Tribological Properties of High-Density Polyethylene

Altmetrics

Downloads

189

Views

288

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

07 August 2019

Posted:

08 August 2019

You are already at the latest version

Alerts
Abstract
Polymer materials are increasingly being used for sliding machine elements due to their numerous advantages. They are used even where they are deformed and in such a state they interact frictionally e.g. in machine hydraulics or lip seals. Few publications deal with the influence of deformation, which is the effect of e.g. assembly on tribological properties of polymeric material. This deformation can reach up to ε ≈ 20% and is achieved without increasing the temperature of the polymer material. The paper presents the results of investigations in which high-density polyethylene (PE-HD) was maintained in deformation by means of a special grip (holder). The wear of the sample was significantly higher than that of the undeformed sample. This effect persisted even after partial relaxation of the stress in the sample after 24 hours. Additional investigations were carried out to explain the obtained results. There were the microscopic observations of the surface after friction, measurements of microhardness and free surface energy. Changes in the value of surface free energy and a significant decrease in microhardness with deformation under tension were observed. Strained material had a different surface appearance after friction and a different size and form of wear products. It was indicated that it is probable that the cohesion of the material will decrease and that the character of the wear process will change as a result of tension. Tension without heating of polymeric material (PE-HD), e.g. as a result of assembly, has been qualified as a hazard to be taken into account when designing and analysing polymeric sliding elements.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated