Preprint
Article

p53-Mediated Oxidative Stress Enhances Indirubin-3′-Monoxime-induced Apoptosis in HCT116 Colon Cancer Cells by Upregulating Death Receptor 5 and TNF-related Apoptosis-inducing Ligand Expression

Altmetrics

Downloads

253

Views

308

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

16 August 2019

Posted:

17 August 2019

You are already at the latest version

Alerts
Abstract
Indirubin-3′-monoxime (I3M) exhibits anti-proliferative activity in various cancer cells; however, its anti-cancer mechanism remains incompletely elucidated. This study revealed that I3M promotes the expression of death receptor 5 (DR5) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in HCT116 p53+/+ cells, resulting in caspase-mediated apoptosis. However, this study demonstrated that HCT116 p53-/- cells are insensitive to I3M-mediated apoptosis, indicating that I3M-induced apoptosis depends on the p53 status of HCT116 cells. Additionally, in HCT116 p53-/- cells, I3M significantly increased Ras expression, while in HCT116 p53+/+ cells, it reduced Ras expression. Furthermore, I3M remarkably increased the production of reactive oxygen species (ROS), which were reduced in transient p53 knockdown, indicating that I3M-mediated apoptosis is promoted by p53-mediated ROS production. Our results also showed that I3M enhanced transcription factor C/EBP homologous protein (CHOP) expression, resulting in endoplasmic reticulum (ER) stress-mediated DR5 expression, which is upregulated by ROS production in HCT116 p53+/+ cells. Moreover, co-treatment with TRAIL synergistically enhanced I3M-induced DR5 expression, thereby triggering TRAIL-induced apoptosis of HCT116 p53+/+ cells, which was interfered by a DR5-specific blocking chimeric antibody. In summary, I3M potently enhances TRAIL-induced apoptosis by upregulating DR5 expression via p53-mediated ROS production in HCT116 p53+/+ cells. However, HCT116 p53-/- cells were resistant to I3M-mediated apoptosis, suggesting that I3M could be a promising anti-cancer candidate against TRAIL-resistant p53+/+ cancer cells.
Keywords: 
Subject: Medicine and Pharmacology  -   Pharmacology and Toxicology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated