Substrate binding proteins (SBP) bind to specific ligands in the periplasmic region and bind to membrane proteins to participate in transport or signal transduction. Typical SBPs consist of two α/β domains and recognize the substrate by hinge motion between two domains. Conversely, short length Rhodothermus marinus SBP (named as RmSBP) exists around the methyl-accepting chemotaxis protein. We previously determined the crystal structure of RmSBP consisting of a single α/β domain, but the substrate recognition mechanism is still unclear. To better understand the short length RmSBP, we performed comparative structure analysis, computational substrate docking, and X-ray crystallographic study. RmSBP shares a high level of similarity in α/β domain with other SBP proteins, but it has a distinct topology in the C-term region. The substrate binding model suggested that conformational change in the peripheral region of RmSBP was required to recognize the substrate. We determined the crystal structures of RmSBP at pH 5.5, 6.0, and 7.5. RmSBP showed structural flexibility of the β1-α2 loop, β5-β6 loop, and extended C-term domain based on the electron density map and temperature B-factor analysis. These results provide information that will further the understanding of the function of the short length SBP.
Keywords:
Subject: Biology and Life Sciences - Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.