Preprint
Article

Assessment of Linearity Improvement in Optical Communication Systems with Machine Learning Methods

This version is not peer-reviewed.

Submitted:

30 September 2019

Posted:

02 October 2019

You are already at the latest version

Abstract
Use of Machine Learning (ML) methodologies in optical communications has paved a new pathway. In this paper, firstly, we discuss the use of ML methodologies for reducing optical fiber nonlinearities, nonlinearity compensation, fault detection and optical performance monitoring. Then we present our recent work where we compare RL-SARSA and SVM based method with conventional method. The results show that RL-SARSA and SVM methods are successful candidates in mitigating the nonlinearities in proposed system as compared to conventional optical communication system.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

270

Views

295

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated