Preprint
Article

Tracking Temporal Development of Optical Thickness of Hydrogen Alpha Spectral Radiation in a Laser Induced Plasma

Altmetrics

Downloads

258

Views

287

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

30 September 2019

Posted:

02 October 2019

You are already at the latest version

Alerts
Abstract
In this paper, we consider the temporal development of the optical density of the H$_\alpha$ spectral line in a hydrogen laser induced plasma. This is achieved by using the so-called duplication method in which the spectral line is re-imaged onto itself and the ratio of the spectral line with it duplication is taken to its measurement without the duplication. We asses the temporal development of the self-absorption of the H$_\alpha$ line by tracking the decay of duplication ratio from its ideal value of 2. We show that when 20% loss is considered along the duplication optical path length, the ratio is 1.8 and decays to a value of 1.25 indicating an optically thin plasma grows in optical density to an optical depth of 1.16 by 400 ns in the plasma decay for plasma initiation conditions using Nd:YAG laser radiation at 120 mJ per pulse in a 1.11$\times10^{5}$ Pa hydrogen/nitrogen gas mixture environment. We also go on to correct the H$_\alpha$ line profiles for the self-absorption impact using two methods. We show that a method in which the optical depth is directly calculated from the duplication ratio is equivalent to standard methods of self-absorption correction when only relative corrections to spectral emissions are needed.
Keywords: 
Subject: Physical Sciences  -   Atomic and Molecular Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated