Preprint
Review

In situ Groundwater Remediation with Bioelectrochemical Systems (BES): A Critical Review and Future Perspectives

Altmetrics

Downloads

760

Views

811

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

14 January 2020

Posted:

17 January 2020

You are already at the latest version

Alerts
Abstract
Groundwater contamination is an ever-growing environmental issue that has attracted much and undiminished attention for the past half century. Groundwater contamination may originate from both anthropogenic (e.g., hydrocarbons) and natural compounds (e.g., nitrate and arsenic); to tackle the removal of these contaminants, different technologies have been developed and implemented. Recently, bioelectrochemical systems (BES) have emerged as a potential treatment for groundwater contamination, with reported in situ applications that showed promising results. Nitrate and hydrocarbons (toluene, phenanthrene, benzene, BTEX and light PAHs) have been successfully removed, due to the interaction of microbial metabolism with poised electrodes, in addition to physical migration due to the electric field generated in a BES. The selection of proper BESs relies on several factors and problems, such as the complexity of groundwater and subsoil environment, scale-up issues, and energy requirements that need to be accounted for. Modeling efforts could help predict case scenarios and select a proper design and approach, while BES-based biosensing could help monitoring remediation processes. In this review, we critically analyze in situ BES applications for groundwater remediation, focusing in particular on different proposed setups, and we identify and discuss the existing research gaps in the field.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated