Preprint
Article

Assessing Legacy Effects of Wildfires on the Crown Structure of Fire-Tolerant Eucalypt Trees Using Airborne Lidar Data

Altmetrics

Downloads

378

Views

311

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 October 2019

Posted:

13 October 2019

You are already at the latest version

Alerts
Abstract
Fire-tolerant eucalypt forests of south eastern Australia are assumed to fully recover from even the most intense fires but surprisingly very few studies have quantitatively assessed that recovery. Accurate assessment of horizontal and vertical attributes of tree crowns after fire is essential to understand the fire’s legacy effects on tree growth and on forest structure. In this study, we quantitatively assessed individual tree crowns 8.5 years after a 2009 wildfire that burnt extensive areas of eucalypt forest in temperate Australia. We used airborne lidar data validated with field measurements to estimate multiple metrics that quantified the cover, density, and vertical distribution of individual-tree crowns in 51 plots of 0.05 ha in fire-tolerant eucalypt forest across four wildfire severity types (unburnt, low, moderate, high). Significant differences in the field-assessed mean height of fire scarring as a proportion of tree height, and in the proportions of trees with epicormic (stem) resprouts were consistent with the gradation in fire severity. Linear mixed-effects models indicated persistent effects of both moderate- and high-severity wildfire on tree crown architecture. Trees at high-severity sites had significantly less crown projection area and live crown width as a proportion of total crown width than those at unburnt and low-severity sites. Significant differences in lidar-based metrics (crown cover, evenness, leaf area density profiles) indicated that tree crowns at moderate- and high-severity sites were comparatively narrow and more evenly distributed down the tree stem. These conical-shaped crowns contrasted sharply with the rounded crowns of trees at unburnt and low-severity sites, and likely influenced both tree productivity and the accuracy of biomass allometric equations for nearly a decade after the fire. Our data provide a clear example of the utility of airborne lidar data for quantifying the impacts of disturbances at the scale of individual trees. Quantified effects of contrasting fire severities on the structure of resprouter tree crowns provide a strong basis for interpreting post-fire patterns in forest canopies and vegetation profiles in lidar and other remotely-sensed data at larger scales.
Keywords: 
Subject: Biology and Life Sciences  -   Forestry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated