Preprint
Article

Effects of Channel Wall Twisting on the Mixing in a T-Shaped Micro-Channel

Altmetrics

Downloads

215

Views

137

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

25 October 2019

Posted:

27 October 2019

You are already at the latest version

Alerts
Abstract
A new design scheme is proposed for twisting the walls of a microchannel, and its performance is demonstrated numerically. The numerical study was carried out for a T-shaped microchannel with twist angles in the range of 0 to 34π. The Reynolds number range was 0.15 to 6. The T-shaped microchannel consists of two inlet branches and an outlet branch. The mixing performance was analyzed in terms of the degree of mixing and relative mixing cost. All numerical results show that the twisting scheme is an effective way to enhance the mixing in a T-shaped microchannel. The mixing enhancement is realized by the swirling of two fluids in the cross section and is more prominent as the Reynolds number decreases. The twist angle was optimized to maximize the DOM, which increases with the length of the outlet branch. The twist angle was also optimized in terms of the relative mixing. The two optimum twisting angles are generally not coincident. The optimum twist angle shows a dependence on the length of the outlet branch but it is not affected much by the Reynolds number.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated