Preprint
Article

Evaluation of Mixed Deep Neural Networks for Reverberant Speech Enhancement

Altmetrics

Downloads

242

Views

235

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 October 2019

Posted:

31 October 2019

You are already at the latest version

Alerts
Abstract
Speech signals are degraded in real-life environments, product of background noise or other factors. The processing of such signals for voice recognition and voice analysis systems presents important challenges. One of the conditions that make adverse quality difficult to handle in those systems is reverberation, produced by sound wave reflections that travel from the source to the microphone in multiple directions.To enhance signals in such adverse conditions, several deep learning-based methods have been proposed and proven to be effective. Recently, recurrent neural networks, especially those with long and short-term memory (LSTM), have presented surprising results in tasks related to time-dependent processing of signals, such as speech. One of the most challenging aspects of LSTM networks is the high computational cost of the training procedure, which has limited extended experimentation in several cases. In this work, we present a proposal to evaluate the hybrid models of neural networks to learn different reverberation conditions without any previous information. The results show that some combination of LSTM and perceptron layers produce good results in comparison to those from pure LSTM networks, given a fixed number of layers. The evaluation has been made based on quality measurements of the signal's spectrum, training time of the networks and statistical validation of results. Results help to affirm the fact that hybrid networks represent an important solution for speech signal enhancement, with advantages in efficiency, but without a significan drop in quality.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated