Preprint
Article

This version is not peer-reviewed.

Deep Community Detection Method for Social Networks

Ling Wu,Qishan Zhang  *,Chi-Hua Chen  *
A peer-reviewed article of this preprint also exists.

Submitted:

01 November 2019

Posted:

03 November 2019

You are already at the latest version

Abstract
With the fast development of the mobile Internet, the online platforms of social networks have rapidly been developing for the purpose of making friends, sharing information, etc. In these online platforms, users being related to each other forms social networks. Literature reviews have shown that social networks have community structure. Through the studies of community structure, the characteristics and functions of networks structure and the dynamical evolution mechanism of networks can be used for predicting user behaviours and controlling information dissemination. Therefore, this study proposes a deep community detection method which includes (1) matrix reconstruction method, (2) spatial feature extraction method and (3) community detection method. The original adjacency matrix in social network is reconstructed based on the opinion leader and nearer neighbors for obtaining spatial proximity matrix. The spatial eigenvector of reconstructed adjacency matrix can be extracted by an auto-encoder based on convolution neural network for the improvement of modularity. In experiments, four open datasets of practical social networks were selected to evaluate the proposed method, and the experimental results show that the proposed deep community detection method obtained higher modularity than other methods. Therefore, the proposed deep community detection method can effectively detect high quality communities in social networks.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated