Preprint
Article

This version is not peer-reviewed.

Strange Stars Models in the Color-Flavor Locked State

Submitted:

04 November 2019

Posted:

06 November 2019

You are already at the latest version

Abstract
In this paper, we found new classes of exact models to the Einstein-Maxwell system of equations which describe the internal structure of a compact star made of strange matter considering the equation of state proposed by Rocha, Bernardo, de Avellar and Horvath in 2019. It has been assumed that this matter is composed of equal number of up, down and strange quarks and a small amount of electrons required to reaching the charge neutrality. If this hypothesis is correct, the neutron stars could be strange stars or hybrid stars with a thin crust of nuclei where the temperatures and pressures are capable of converting hadronic matter into this new stable phase of quarks. We have chosen a particular form of gravitational potential Z(x) that depends on an adjustable parameter related to degree of anisotropy of the models and the new solutions can be written in terms of elementary and polynomial functions. The obtained models satisfy all physical features expected in a realistic star and the expressions for mass, density and stellar radius are comparable with the experimental results.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated