Millimeter wave wide-band imaging is widely studied for a variety of applications. However real-time millimeter wave wide-band imaging at frequencies above 30GHz for moving targets in a large field of view has not been realized commercially. A 2D sparse array with transmitter multiplexing is a promising solution to this problem. In this article, a method combining compressed sensing and orthogonal coded multiplexing was proposed, and the imaging performance was analyzed for different reconstruction algorithms and observation matrices by imaging simulation for a continuous object. Also the influence on the dynamic range of the original signal introduced by orthogonal coded multiplexing was studied. This work demonstrated that the proposed method was effective in reconstructing the image with a real-time capability. It is shown that different algorithms and matrices resulted in distinct performances, while the evaluation parameter selection also played a role. This work provided useful instructions for both the hardware and software design of a real-time 3D millimeter wave imaging system in the future.
Keywords:
Subject: Engineering - Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.