Preprint
Article

Trehalose Protects Maize Plants from Salt Stress and Phosphorus Deficiency

Altmetrics

Downloads

211

Views

235

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 November 2019

Posted:

28 November 2019

You are already at the latest version

Alerts
Abstract
This study was undertaken to elucidate the role of trehalose (Tre) in mitigating oxidative stress under salinity and low P in maize. Eight-day-old maize seedlings of two maize varieties, BARI Hybrid Maize-7 and BARI Hybrid Maize-9 were subjected to salinity (150 mM NaCl), low P (5 µM KH2PO4) and their combined stress with or without 10 mM Tre for 15-d.Salinity and combined stress significantly inhibited the shoot length, root length, and root volume, whereas, low P increased the root length and volume in both genotypes. Exogenous Tre in the stress treatments increased all of the growth parameters as well as decreased the salinity, low P and combined stress-mediated Na+/K+, ROS, MDA, LOX activity and MG in both genotypes. Under salinity and low P stress, the SOD activity increased in both genotypes, but the activity decreased in combined stress. POD activity increased in all stress treatments. Interestingly, Tre application enhanced the SOD activity in all the stress treatments but inhibited the POD activity. Both CAT and GPX activity were increased by saline and low P stress while the activities inhibited in combined stress. Similar results were found for APX, GR, and DHAR activities in both genotypes. However, MDHAR activity was inhibited in all the stresses. Interestingly, Tre enhanced CAT APX, GPX, GR, MDHAR and DHAR activities suggesting the amelioration of ROS scavenging in maize under all the stresses. Increased GST activity in presence or absence of Tre might involve in detoxification of hydroperoxides as well as leaf senescence. On the other hand, increased glyoxalase activities in saline and low P stress in BHM-9 suggested better MG detoxification system because of down-regulation of Gly-I activity in BHM-7 in those stresses. Tre also increased the glyoxalase activities in both genotypes under all the stresses. Tre improved the growth in maize seedlings by decreasing Na+/K+, ROS, MDA, and MG through regulating antioxidant and glyoxalase systems.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated